

Sonic Fast Recovery Diode

		prominary
V_{RRM}	=	1200 V
I _{dav}	=	34 A
t _{rr}	=	150 ns

nreliminary

High Performance Fast Recovery Diode Low Loss and Soft Recovery 1~ Rectifier Bridge

Part number

DHG40B1200LB

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: SMPD

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littlefuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

preliminary

Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{VJ} = 25^{\circ}C$			1200	V
V _{RRM}	max. repetitive reverse blocking ve	oltage	$T_{v_J} = 25^{\circ}C$			1200	V
I _R	reverse current, drain current	$V_{\rm R}$ = 1200 V	$T_{VJ} = 25^{\circ}C$			40	μA
		$V_{R} = 1200 V$	$T_{vJ} = 125^{\circ}C$			0.4	mA
VF	forward voltage drop	I _F = 20 A	$T_{vJ} = 25^{\circ}C$			2.24	V
		$I_{F} = 40 \text{ A}$				2.89	V
		I _F = 20 A	T _{vJ} = 125°C			2.24	V
		$I_{F} = 40 \text{ A}$				3.15	V
I DAV	bridge output current	T _c = 80°C	T _{vJ} = 150°C			34	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage	T _{vJ} = 150°C			1.35	V	
r _F	slope resistance } for power lo				43	mΩ	
R _{thJC}	thermal resistance junction to case					1.5	K/W
R _{thCH}	thermal resistance case to heatsink				0.50		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			80	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{ sine}; V_{R} = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			150	Α
C	junction capacitance	$V_{R} = 600 V f = 1 MHz$	$T_{v_J} = 25^{\circ}C$		8		pF
I _{RM}	max. reverse recovery current		$T_{vJ} = 25 °C$		15		Α
		$I_{\rm F} = 15 \text{A}; V_{\rm R} = 600 \text{V}$	T _{vJ} = 125 °C		20		Α
t _{rr}	reverse recovery time	I _F = 15 A; V _R = 600 V -di _F /dt = 600 A/μs	$T_{VJ} = 25 °C$		150		ns
	,	1	T _{vJ} = 125 °C		250		ns

20190212a

preliminary

Package SMPD					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				100	Α	
T _{vj}	virtual junction temperature			-55		150	°C	
T _{op}	operation temperature			-55		125	°C	
T _{stg}	storage temperature			-55		150	°C	
Weight					8.5		g	
F _c	mounting force with clip			40		130	Ν	
d _{Spp/App}	terminal to terminal			1.6			mm	
d _{Spb/Apb}	creepage distance on surface striking distance through		terminal to backside	4.0			mm	
V _{ISOL}	isolation voltage	t = 1 second		3000			V	
	t = 1 minute		50/60 Hz, RMS; liso∟ ≤ 1 mA	2500			V	

Part description

- D = Diode
- H = Sonic Fast Recovery Diode
- G = extreme fast
- 40 = Current Rating [A]
- B = 1~ Rectifier Bridge 1200 = Reverse Voltage [V]
- LB = SMPD-B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG40B1200LB-TUB	DHG40B1200LB-TUB	Tube	20	525198
Alternative	DHG40B1200LB-TRR	DHG40B1200LB	Tape & Reel	200	524922

Equivalent Circuits for Simulation			* on die level	$T_{vJ} = 150 \ ^{\circ}C$
	- Ro-	Fast Diode		
V _{0 max}	threshold voltage	1.35		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	41		mΩ

IXYS reserves the right to change limits, conditions and dimensions.

20190212a

preliminary

Outlines SMPD

- 2) additional max. 0.05 mm per side by punching misalignement or overlap of dam bar or bending compression
- DCB area 10 to 50 μm convex; position of DCB area in relation to plastic rim: ±25 μm (measured 2 mm from Cu rim)
- 4) terminal plating: 0.2 1 μm Ni + 10 25 μm Sn (gal v.) cutting edges may be partially free of plating

IXYS reserves the right to change limits, conditions and dimensions.

20190212a