
SK 70 DH

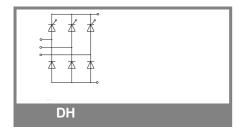
SEMITOP® 3

Half Controlled Bridge Rectifier

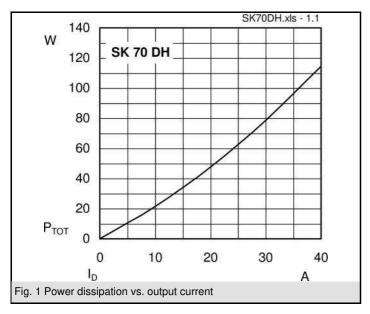
SK 70 DH

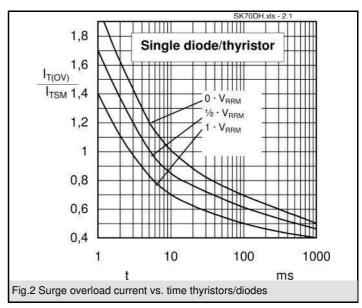
Preliminary Data

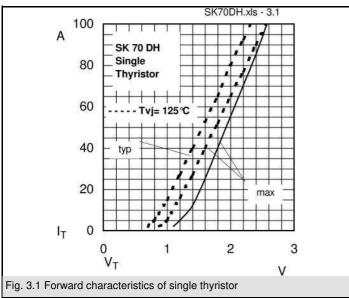
Features

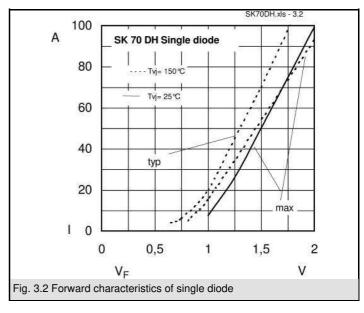

- · Compact design
- · One screw mounting
- Heat transfer and insolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

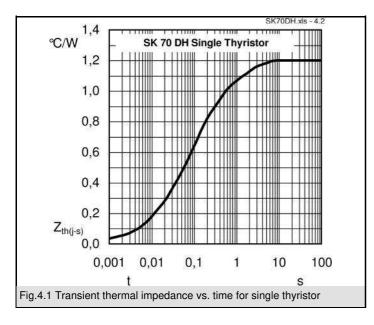
Typical Applications*

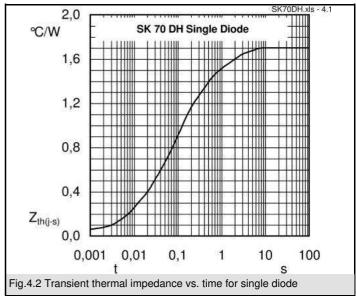

- Soft starters
- Light control
- · Temperature control
- Motor control

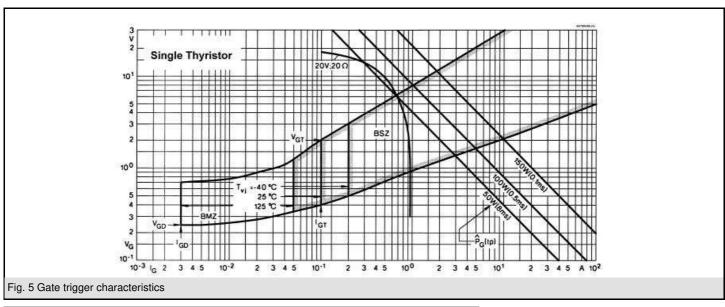

V _{RSM} V	V _{RRM} , V _{DRM}	$I_D = 68 \text{ A (full conduction)}$ $(T_S = 80 \text{ °C)}$
900	800 1200	SK 70 DH 08 SK 70 DH 12
1700	1600	SK 70 DH 16

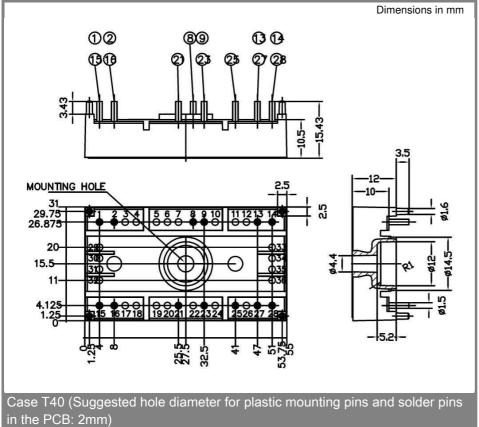

Symbol	Conditions	Values	Units
I _D	T _s = 80 °C	68	Α
I _{FSM} / I _{TSM}	T _{vi} = 25 °C; 10 ms	370	Α
	T _{vi} = 125 °C; 10 ms	270	Α
i²t	T _{vj} = 25 °C; 10 ms	685	A²s
	$T_{vj} = 125 ^{\circ}\text{C}; 10 \text{ms}$	365	A²s
V _T	T _{vj} = 25 °C; 75A	max. 1,9	V
$V_{T(TO)}$	T _{vi} = 125 °C;	max. 1	V
r _T	$T_{vj} = 125 ^{\circ}\text{C}$	max. 10	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 10	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 5060 Hz	max. 50	A/µs
t _q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	120	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	80 / 150	mA
I _L	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega$	150 / 300	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 2	V
I _{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 3	mA
Rth(j-s)	Per thyristor	1,2	K/W
	Per diode	1,7	K/W
T _{solder}	Terminals, 10s	260	°C
T _{vi}	Diodes	-40+150	°C
T_{vj}^{vj}			°C
T _{stg}		-40+125	°C
T_{vj}	Thyristors	-40+125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 (2500)	V
M _s	Mounting torque to heatsink	2,5	Nm
m	weight	30	g
Case	SEMITOP® 3	T 40	

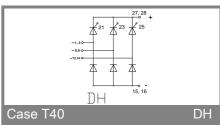



SK 70 DH









^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.