



Data Sheet Issue:- 1

# **Rectifier Diode**

Types W0642WC160 to W0642WC240

Old Type No.: SW16-24CXC380

Absolute Maximum Ratings

|                  | VOLTAGE RATINGS                               | MAXIMUM<br>LIMITS | UNITS |
|------------------|-----------------------------------------------|-------------------|-------|
| V <sub>RRM</sub> | Repetitive peak reverse voltage, (note 1)     | 1600-2400         | V     |
| V <sub>RSM</sub> | Non-repetitive peak reverse voltage, (note 1) | 1700-2500         | V     |

|                      | OTHER RATINGS                                                                                       | MAXIMUM<br>LIMITS   | UNITS            |
|----------------------|-----------------------------------------------------------------------------------------------------|---------------------|------------------|
| I <sub>F(AV)M</sub>  | Maximum average forward current, T <sub>sink</sub> =55°C, (note 2)                                  | 642                 | А                |
| I <sub>F(AV)M</sub>  | Maximum average forward current. T <sub>sink</sub> =100°C, (note 2)                                 | 477                 | А                |
| I <sub>F(AV)M</sub>  | Maximum average forward current. T <sub>sink</sub> =100°C, (note 3)                                 | 291                 | А                |
| I <sub>F(RMS)M</sub> | Nominal RMS forward current, T <sub>sink</sub> =25°C, (note 2)                                      | 1157                | А                |
| I <sub>F(d.c.)</sub> | D.C. forward current, T <sub>sink</sub> =25°C, (note 4)                                             | 997                 | А                |
| I <sub>FSM</sub>     | Peak non-repetitive surge t <sub>p</sub> =10ms, V <sub>rm</sub> =60%V <sub>RRM</sub> , (note 5)     | 5500                | А                |
| I <sub>FSM2</sub>    | Peak non-repetitive surge t <sub>p</sub> =10ms, V <sub>rm</sub> ≤10V, (note 5)                      | 6050                | А                |
| l <sup>2</sup> t     | $I^{2}$ t capacity for fusing t <sub>p</sub> =10ms, V <sub>rm</sub> =60%V <sub>RRM</sub> , (note 5) | 151×10 <sup>3</sup> | A <sup>2</sup> s |
| l <sup>2</sup> t     | $I^{2}t$ capacity for fusing t <sub>p</sub> =10ms, V <sub>rm</sub> ≤10V, (note 5)                   | 183×10 <sup>3</sup> | A <sup>2</sup> s |
| T <sub>j op</sub>    | Operating temperature range                                                                         | -40 to +180         | °C               |
| T <sub>stg</sub>     | Storage temperature range                                                                           | -40 to +200         | °C               |

Notes:-

1) De-rating factor of 0.13% per °C is applicable for  $T_j$  below 25°C.

2) Double side cooled, single phase; 50Hz, 180° half-sinewave.

3) Single side cooled, single phase; 50Hz, 180° half-sinewave.

4) Double side cooled.

5) Half-sinewave, 180°C T<sub>i</sub> initial.

# **Characteristics**

|                   | PARAMETER                                | MIN. | TYP. | MAX. | TEST CONDITIONS (Note 1)                                                 | UNITS |
|-------------------|------------------------------------------|------|------|------|--------------------------------------------------------------------------|-------|
| V <sub>FM</sub>   | Maximum peak forward voltage             | -    | -    | 2.10 | I <sub>TM</sub> =1500A                                                   | V     |
| V <sub>FM</sub>   | Maximum peak forward voltage             | -    | -    | 2.37 | I <sub>TM</sub> =1900A                                                   |       |
| V <sub>T0</sub>   | Threshold voltage                        | -    | -    | 0.99 |                                                                          | V     |
| r⊤                | Slope resistance                         | -    | -    | 0.74 |                                                                          | mΩ    |
| I <sub>RRM</sub>  | Peak reverse current                     | -    | -    | 15   | Rated V <sub>RRM</sub>                                                   | mA    |
| I <sub>RRM</sub>  | Peak reverse current                     | -    | -    | 15   | Rated V <sub>RRM</sub> , T <sub>j</sub> =25°C                            | mA    |
| Q <sub>rr</sub>   | Recovered charge                         | -    | 1000 | -    |                                                                          | μC    |
| Q <sub>ra</sub>   | Recovered charge, 50% Chord              | -    | 525  | 750  |                                                                          | μC    |
| l <sub>rr</sub>   | Reverse recovery current                 | -    | 70   | -    | $I_{TM}$ =500A, t <sub>p</sub> =500µs, di/dt=10A/µs, V <sub>r</sub> =50V | А     |
| t <sub>rr</sub>   | Reverse recovery time                    | -    | 15   | -    |                                                                          | μs    |
| <b>D</b>          |                                          | -    | -    | 0.09 | Double side cooled                                                       | K/W   |
| R <sub>thJK</sub> | Thermal resistance, junction to heatsink | -    | -    | 0.18 | Single side cooled                                                       | K/W   |
| F                 | Mounting force                           | 3.3  | -    | 5.5  |                                                                          | kN    |
| W <sub>t</sub>    | Weight                                   | -    | 70   | -    |                                                                          | g     |

Notes:-

1) Unless otherwise indicated  $T_j=180^{\circ}C$ .

# **Notes on Ratings and Characteristics**

#### 1.0 Voltage Grade Table

| Voltage Grade | V <sub>DRM</sub> V <sub>DSM</sub> V <sub>RRM</sub><br>V | V <sub>RSM</sub><br>V | V <sub>D</sub> V <sub>R</sub><br>DC V |
|---------------|---------------------------------------------------------|-----------------------|---------------------------------------|
| 16            | 1600                                                    | 1700                  | 1050                                  |
| 18            | 1800                                                    | 1900                  | 1150                                  |
| 20            | 2000                                                    | 2100                  | 1250                                  |
| 22            | 2200                                                    | 2300                  | 1350                                  |
| 24            | 2400                                                    | 2500                  | 1450                                  |

#### 2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

#### 3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T<sub>i</sub> below 25°C.

#### 4.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

 $W_{AV} = \frac{\Delta T}{R_{th}}$  $\Delta T = T_{j \max} - T_{K}$ 

#### 5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{V_{T0}^{2} + 4 \cdot ff^{2} \cdot r_{T} \cdot W_{AV}}}{2 \cdot ff^{2} \cdot r_{T}}$$

and:

Where  $V_{T0}$ =0.99V, r<sub>T</sub>=0.74m $\Omega$ ,

 $R_{th}$  = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

| Supplementary Thermal Impedance |               |                |                 |         |  |  |
|---------------------------------|---------------|----------------|-----------------|---------|--|--|
| Conduction Angle                | 6 Phase (60°) | 3 Phase (120°) | 1/2 Wave (180°) | d.c.    |  |  |
| Square wave Double Side Cooled  | 0.10258       | 0.09759        | 0.09519         | 0.09092 |  |  |
| Square wave Single Side Cooled  | 0.21094       | 0.20665        | 0.20388         | 0.19887 |  |  |
| Sine wave Double Side Cooled    | 0.09589       | 0.09352        | 0.09138         |         |  |  |
| Sine wave Single Side Cooled    | 0.20761       | 0.20212        | 0.20013         |         |  |  |

| Form Factors                                             |       |       |       |      |  |  |
|----------------------------------------------------------|-------|-------|-------|------|--|--|
| Conduction Angle6 Phase (60°)3 Phase (120°)½ Wave (180°) |       |       |       | d.c. |  |  |
| Square wave                                              | 2.449 | 1.732 | 1.414 | 1    |  |  |
| Sine wave                                                | 2.778 | 1.879 | 1.57  |      |  |  |

#### 5.2 Calculating V<sub>F</sub> using ABCD Coefficients

The on-state characteristic  $I_F$  vs.  $V_F$ , on page 6 is represented in two ways;

- (i) the well established  $V_{T0}$  and  $r_T$  tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for  $V_F$  in terms of  $I_F$  given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for  $V_F$  agree with the true device characteristic over a current range, which is limited to that plotted.

|   | 25°C Coefficients        | 180°C Coefficients       |
|---|--------------------------|--------------------------|
| А | 0.990043834              | -0.107758622             |
| В | -0.01613183              | 0.2279921                |
| С | 2.13863×10 <sup>-4</sup> | 6.45812×10 <sup>-3</sup> |
| D | 0.02120683               | -0.01105906              |

5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left( 1 - e^{\frac{-t}{\tau_p}} \right)$$

Where p = 1 to *n*, *n* is the number of terms in the series and:

- t = Duration of heating pulse in seconds.
- $r_{t}$  = Thermal resistance at time t.
- $r_p$  = Amplitude of  $p_{th}$  term.
- $\tau_p$  = Time Constant of r<sub>th</sub> term.

The coefficients for this device are shown in the tables below:

| D.C. Single Side Cooled |                |         |         |                          |                          |  |  |
|-------------------------|----------------|---------|---------|--------------------------|--------------------------|--|--|
| Term                    | Term 1 2 3 4 5 |         |         |                          |                          |  |  |
| r <sub>p</sub>          | 0.1359         | 0.01281 | 0.04058 | 7.41208×10 <sup>-3</sup> | 2.15859×10 <sup>-3</sup> |  |  |
| τρ                      | 2.28974        | 1.21792 | 0.17167 | 0.02534                  | 2.7968×10 <sup>-3</sup>  |  |  |

| D.C. Double Side Cooled |              |         |         |                          |  |  |  |
|-------------------------|--------------|---------|---------|--------------------------|--|--|--|
| Term                    | Term 1 2 3 4 |         |         |                          |  |  |  |
| r <sub>p</sub>          | 0.05189      | 0.02567 | 0.01199 | 1.36098×10 <sup>-3</sup> |  |  |  |
| τρ                      | 0.39897      | 0.16272 | 0.04052 | 8.55833×10 <sup>-3</sup> |  |  |  |

### 6.0 Reverse recovery ratings

(i)  $Q_{ra}$  is based on 50%  $I_{rm}$  chord as shown in Fig. 1



Fig. 1

(ii)  $Q_{rr}$  is based on a 150µs integration time i.e.

$$Q_{rr} = \int_{0}^{150\,\mu s} i_{rr}.dt$$

(iii)

K Factor = 
$$\frac{t_1}{t_2}$$

# **Curves**





# Figure 2 - Transient thermal impedance





# Figure 4 - Total recovered charge, Qrr

Figure 6 - Peak reverse recovery current, Irm













Figure 8 – Forward current vs. Power dissipation – Double Side Cooled





Figure 9 – Forward current vs. Heatsink temperature - Double Side Cooled



Figure 11 – Forward current vs. Heatsink temperature – Single Side Cooled



# **Outline Drawing & Ordering Information**

