

Trench IGBT Modules

SKM200MLI066TAT

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

- Case temperature limited to T_c =125°C max
- Recommended T_{op} = -40..+150°C
- T_{vj} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified							
•							
Symbol	Conditions		Values	Units			
IGBT	ı		1				
V _{CES}	T _j = 25 °C T _i = 175 °C		600	V			
I _C	T _j = 175 °C	T _c = 25 °C	280	Α			
		T _c = 80 °C	210	Α			
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α			
V_{GES}			± 20	V			
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; VCES < 600 V	T _j = 150 °C	6	μs			
Inverse D	iode						
I_{F}	T _j = 175 °C	$T_c = 25 ^{\circ}C$	270	Α			
		$T_c = 80 ^{\circ}C$	200	Α			
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α			
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1310	Α			
Freewhee	ling Diode						
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$	270	Α			
		T_c = 80 °C	200	Α			
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α			
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1310	Α			
Module							
$I_{t(RMS)}$			500	Α			
T _{vj}			- 40 + 175	°C			
T _{stg}			- 40 + 125	°C			
V _{isol}	AC, 1 min.		2500	V			

Characteristics T _{case}		= 25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3.2 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,5	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,7	4,5	mΩ
		T _j = 150°C		5	6,5	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V			1,45	1,9	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,7	2,1	V
C _{ies}				12,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,76		nF
C _{res}				0,36		nF
Q_G	V _{GE} = -15V+15V			2254		nC
R _{Gint}	T _j = 25 °C			1		Ω
t _{d(on)}				78		ns
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 300V		68		ns
E _{on}	di/dt = 2000 A/µs	I _C = 200A T _i = 150 °C		2,53 314		mJ
$\mathbf{t}_{d(off)}$ \mathbf{t}_{f}	$R_{Goff} = 1 \Omega$ di/dt = 2000 A/µs	V _{GE} = -15V/+15V		80		ns ns
E _{off}				6,82		mJ
R _{th(j-c)}	per IGBT	•		0,21		K/W

Trench IGBT Modules

SKM200MLI066TAT

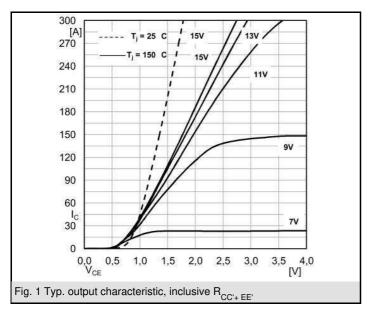
Features

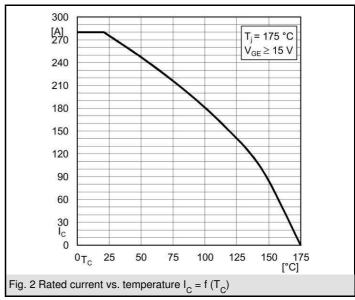
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

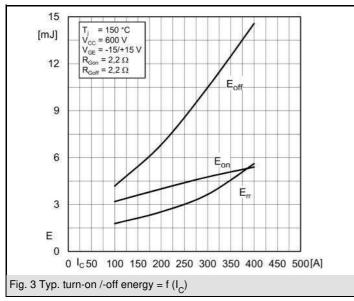
Typical Applications*

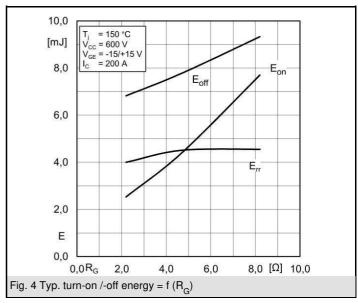
- UPS
- 3 Level Inverter

Remarks


- Case temperature limited to T_c =125°C max
- Recommended T_{op} = -40..+150°C
- T_{vi} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V			1,4	1,6	V			
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,4	1,6	V			
V_{F0}		T _j = 25 °C		0,95	1	V			
		T _j = 150 °C		0,85	0,9	V			
r _F		T _j = 25 °C		2	3	mΩ			
		T _j = 150 °C		2,7	3,5	mΩ			
I _{RRM}	I _F = 200 A	T _j = 150 °C				A			
Q _{rr}	di/dt = 2000 A/μs V _{GF} = -15 +15 V; V _{CC} =			4		μC mJ			
E _{rr}	300 V			4		1113			
R _{th(j-c)D}	per diode			0,39		K/W			
	eling diode (Neutral C	Clamp Diode)							
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V			1,4	1,6	V			
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,4	1,6	V			
V_{F0}		T _j = 25 °C		0,95	1	V			
		T _j = 150 °C		0,85	0,9	V			
r _F		T _j = 25 °C		2	3	V			
		T _j = 150 °C		2,7	3,5	V			
I _{RRM}	I _F = 200 A	T _j = 150 °C		175,8		A			
Q _{rr}	di/dt = 2000 A/µs			12		μC			
E _{rr}	V _{GE} = -15+15 V; V _{CC} = 300 V			4		mJ			
R _{th(j-c)FD}	per diode			0,39		K/W			
R _{th(c-s)}	per module				0,038	K/W			
M_s	to heat sink M6		3		5	Nm			
M _t	to terminals M6		2,5		5	Nm			
w					310	g			
Temperature sensor									
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω			
						K			


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

