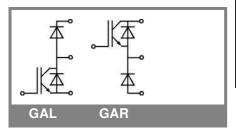


SEMITOP® 2

IGBT Module

SK50GAL065 SK50GAR065


Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low treshold voltage

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions			Values	Units	
IGBT						
V_{CES}	T _j = 25 °C T _i = 125 °C			600	V	
I _C	T _j = 125 °C	T _s = 25 °C		54	Α	
		$T_s = 80 ^{\circ}C$		40	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			60	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C		10	μs	
Inverse	Diode					
I_{F}	T _j = 150 °C	$T_s = 25 ^{\circ}C$		57	Α	
		T _s = 80 °C		38	Α	
I_{FRM}	I _{FRM} = 2 x I _{Fnom}			100	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		440	Α	
Freewhe	eeling Diode				•	
I_{F}	T _j = 150 °C	$T_s = 25 ^{\circ}C$		57	Α	
		$T_s = 80 ^{\circ}C$		38	Α	
I _{FRM}				100	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		440	А	
Module					•	
$I_{t(RMS)}$					Α	
T _{vj}				-40 +150	°C	
T _{stg}				-40 +125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT						_	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.4$ mA		3	4	5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0044	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			240	nA	
V _{CE0}		T _j = 25 °C		1,1		V	
		T _j = 125 °C		1,1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		15		mΩ	
		T _j = 125°C		19		$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V			2	2,5	V	
		$T_j = 125^{\circ}C_{chiplev}$		2,2		V	
C _{ies}				3,2		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF	
C _{res}				0,18		nF	
t _{d(on)}				60	80	ns	
t _r	R_{Gon} = 16 Ω	$V_{CC} = 300V$		30	40	ns	
E _{on}		I _C = 40A		1,1	1,4	mJ	
t _{d(off)}	$R_{Goff} = 16 \Omega$	T _j = 125 °C		220	280	ns	
t _f		V _{GE} =±15V		20	26	ns	
E _{off}				0,7	0,9	mJ	
$R_{th(j-s)}$	per IGBT				0,85	K/W	

SK50GAL065

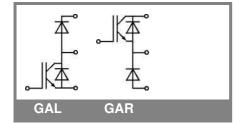
IGBT Module

SK50GAL065 SK50GAR065

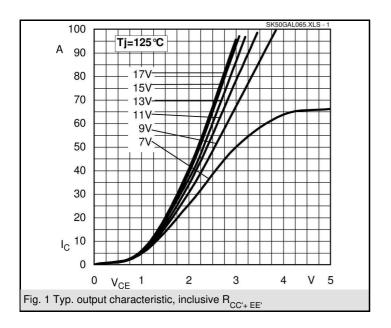
Preliminary Data

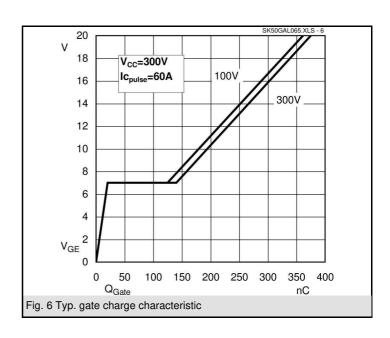
Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low treshold voltage

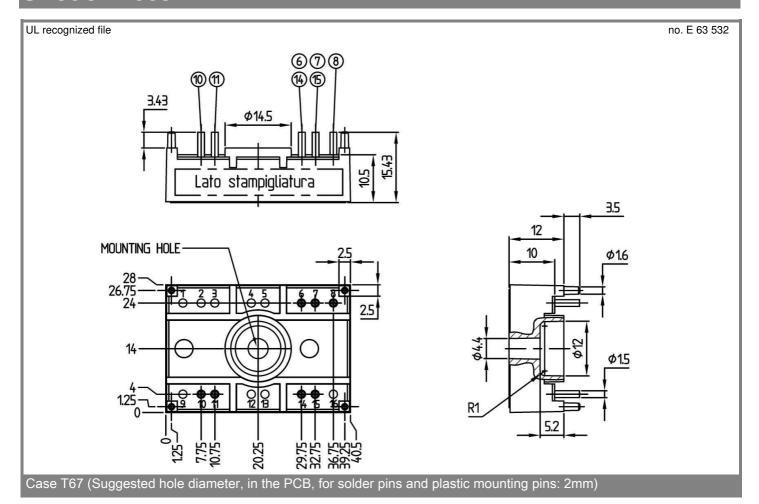

Typical Applications*

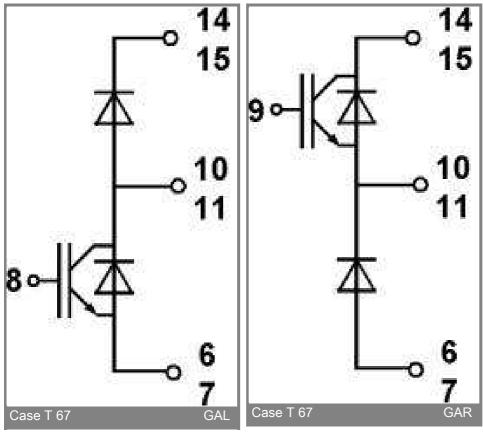
- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{chiplev.}$		1,3	1,5	V		
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,2	1,45	V		
V_{F0}		T _j = 25 °C				V		
		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 25 °C				mΩ		
		T _j = 125 °C		9	16	$m\Omega$		
I _{RRM}	I _F = 30 A	T _j = 125 °C		22		Α		
Q_{rr}	di/dt = -500 A/µs			2,2		μC		
E _{rr}	V _{CC} = 300V			0,2		mJ		
$R_{th(j-s)D}$	per diode				1,2	K/W		
Freewheeling Diode								
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		1,3	1,5	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,2	1,45	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		9	16	V		
I _{RRM}	I _F = 30 A	T _j = 125 °C		22		Α		
Q_{rr}	di/dt = -500 A/μs			2,2		μC		
E _{rr}	V _R =300V			0,2		mJ		
R _{th(j-s)FD}	per diode				1,2	K/W		
M_s	to heat sink				2	Nm		
w				19		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.


SK50GAL065



SK50GAL065

4 21-02-2007 SCT © by SEMIKRON

