

SEMITOP® 3

3-phase bridge rectifier + brake chopper +3-phase bridge inverter SK 10 DGDL 126 ET

Preliminary Data

Features

- · Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

Typical Applications*

Inverter

Absolute Maximum Ratings T _s = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		1200	V				
I _C	T _s = 25 (80) °C	15 (11)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	16	Α				
V_{GES}	·	±20	V				
T_j		-40 + 150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (80) °C	25 (17)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	50	Α				
T_j		-40 + 150	°C				
Rectifier							
V_{RRM}		1600	V				
I _F	T _s = 80 °C	21	Α				
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, sin 180 °, $T_j = 25 \text{ °C}$	220	Α				
I² _t	$t_p = 10 \text{ ms}, \sin 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	240	A²s				
T_j		-40 + 150	°C				
T _{sol}	Terminals, 10s	260	°C				
T _{stg}		-40 +12 5	°C				
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V				

Characteristics		T _s = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter, Chopper								
V _{CEsat} V _{GE(th)} V _{CE(TO)} r _T C _{ies}	$I_{C} = 8 \text{ A}, T_{j} = 25 (125) ^{\circ}\text{C}$ $V_{GE} = V_{CE}, I_{C} = 0,3 \text{ mA}$ $T_{j} = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $T_{j} = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $V_{CE} = 25 V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	5	1,7 (2) 5,8 1 (0,9) 87 (138) 0,7	2,1 (2,4) 6,5 1,2 (1,1) 113 (162)	V V MΩ nF			
C _{oes} C _{res} R _{th(j-s)}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ per IGBT		0,2 0,1	2	nF nF K/W			
$t_{d(on)}$ t_r $t_{d(off)}$ t_f t_{on} t_{on}	under following conditions V_{CC} = 600 V, V_{GE} = \pm 15 V I_{C} = 8 A, T_{j} = 125 °C R_{Gon} = R_{Goff} = 75 Ω inductive load		85 30 430 90 1		ns ns ns ns mJ mJ			
Diode - Inverter, Chopper								
$V_{F} = V_{EC}$ $V_{(TO)}$ r_{T} $R_{th(j-s)}$ I_{RRM}	$\begin{aligned} & I_F = 8 \text{ Å}, \ T_j = 25(125) \text{ °C} \\ & T_j = 25 \text{ °C} (125) \text{ °C} \\ & T_j = 25 \text{ °C} (125) \text{ °C} \\ & \text{per diode} \\ & \text{under following conditions} \end{aligned}$		1,9 (2) 1 (0,8) 40 (53)	2,2 1,1 (0,9) 47 2,1	V V mΩ K/W			
Q _{rr} E _{rr}	$I_F = 15 \text{ A}, V_R = 600 \text{ V}$ $V_{GE} = 0 \text{ V}, T_j = 125 \text{ °C}$ $di_{F/dt} = 570 \text{ A/}\mu\text{s}$		3,5 1,4		μC mJ			
Diode rectifier								
V_F $V_{(TO)}$ r_T $R_{th(j-s)}$	$I_F = 15 \text{ A}, T_j = 25() ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$ per diode		1,1 0,8 20	2,7	V V mΩ K/W			
Temperatur sensor								
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanical data								
w M _s	Mounting torque		30	2,5	g Nm			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.