MiniSKiiP[®]2 3-phase bridge inverter SKiiP 23AC126V1 Preliminary Data #### **Features** - Fast Trench IGBTs - Robust and soft freewheeling diodes in CAL technology - Highly reliable spring contacts for electrical connections - UL recognised file no. E63532 ### **Typical Applications** - Inverter up to 16 kVA - Typical motor power 7,5 kW #### **Remarks** • V_{CEsat} , V_F = chip level value | Absolute Maximum Ratings T _S = 25 °C, unless otherwise specified | | | | | | | | |--|---|---------------------------|---------------|--|--|--|--| | Symbol | Conditions | Values | Units | | | | | | IGBT - Inverter | | | | | | | | | V _{CES}
I _C | $T_s = 25 (70) ^{\circ}C$
$t_p \le 1 \text{ ms}$ | 1200
41 (31) | V
A | | | | | | I _{CRM}
V _{GES} | t _p ≤ 1 ms | 50
± 20 | A
V | | | | | | T _j
Diode - I n | verter | -40+150 | °C | | | | | | I _F | $T_s = 25 (70) ^{\circ}C$
$t_p \le 1 \text{ ms}$ | 30 (22)
50 | A
A | | | | | | I _{tRMS}
T _{stg} | per power terminal (20 A / spring) $T_{op} \le T_{stg}$ | -40+150
100
-40+125 | °C
A
°C | | | | | | V _{isol} | AC, 1 min. | 2500 | V | | | | | | Character | istics T | T _S = 25 °C, unless otherwise specified | | | | | | | |---------------------|--|--|------------|-----------|-------|--|--|--| | Symbol | Conditions | min. | typ. | max. | Units | | | | | IGBT - Inverter | | | | | | | | | | V_{CEsat} | I _{Cnom} = 25 A, T _i = 25 (125) °C | | 1,7 (2) | 2,1 (2,4) | V | | | | | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$ | 5 | 5,8 | 6,5 | V | | | | | V _{CE(TO)} | T _i = 25 (125) °C | | 1 (0,9) | 1,2 (1,1) | V | | | | | r _T | T _j = 25 (125) °C | | 28 (44) | 36 (52) | mΩ | | | | | C _{ies} | V'_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz | | 1,8 | | nF | | | | | C _{oes} | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ | | 0,3 | | nF | | | | | C _{res} | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ | | 0,2 | | nF | | | | | $R_{th(j-s)}$ | per IGBT | | 0,9 | | K/W | | | | | t _{d(on)} | under following conditions | | 80 | | ns | | | | | t _r | $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ | | 30 | | ns | | | | | t _{d(off)} | I _{Cnom} = 25 A, T _i = 125 °C | | 480 | | ns | | | | | t _f `´ | $R_{Gon} = R_{Goff} = 30 \Omega$ | | 85 | | ns | | | | | E _{on} | inductive load | | 3,7 | | mJ | | | | | E _{off} | | | 3,1 | | mJ | | | | | Diode - Inverter | | | | | | | | | | $V_F = V_{EC}$ | I _{Fnom} = 25 A, T _j = 25 (125) °C | | 1,8 (1,8) | 2,1 (2,2) | V | | | | | V _(TO) | T _i = 25 (125) °C | | 1 (0,8) | 1,1 (0,9) | V | | | | | r _T | T _i = 25 (125) °C | | 32 (40) | 40 (52) | mΩ | | | | | $R_{th(j-s)}$ | per diode | | 1,7 | | K/W | | | | | I _{RRM} | under following conditions | | 35 | | Α | | | | | Q _{rr} | I _{Fnom} = 25 A, V _R = 600 V | | 6 | | μC | | | | | E _{rr} | V _{GE} = 0 V, T _i = 125 °C | | 2,6 | | mJ | | | | | | di _F /dt = 1000 A/μs | | | | | | | | | Temperature Sensor | | | | | | | | | | R _{ts} | 3 %, T _r = 25 (100) °C | | 1000(1670) | | Ω | | | | | Mechanical Data | | | | | | | | | | m | | | 65 | | g | | | | | M_s | Mounting torque | 2 | | 2,5 | Nm | | | | This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.